|
|
@@ -0,0 +1,41 @@
|
|
|
+<!DOCTYPE HTML>
|
|
|
+<html>
|
|
|
+
|
|
|
+<head>
|
|
|
+ <title>Brain JS Test</title>
|
|
|
+</head>
|
|
|
+
|
|
|
+<body>
|
|
|
+ <h1>Brain JS Test</h1>
|
|
|
+ <p>
|
|
|
+ Brain.js is a machine learning program in Javascript.
|
|
|
+ </p>
|
|
|
+ <div id="output"></div>
|
|
|
+ <div id="network"></div>
|
|
|
+</body>
|
|
|
+<script src="//unpkg.com/brain.js"></script>
|
|
|
+<script type="text/javascript">
|
|
|
+// provide optional config object (or undefined). Defaults shown.
|
|
|
+const config = {
|
|
|
+ binaryThresh: 0.5,
|
|
|
+ hiddenLayers: [3], // array of ints for the sizes of the hidden layers in the network
|
|
|
+ activation: 'sigmoid', // supported activation types: ['sigmoid', 'relu', 'leaky-relu', 'tanh'],
|
|
|
+ leakyReluAlpha: 0.01, // supported for activation type 'leaky-relu'
|
|
|
+};
|
|
|
+
|
|
|
+// create a simple feed forward neural network with backpropagation
|
|
|
+const net = new brain.NeuralNetwork(config);
|
|
|
+
|
|
|
+net.train([
|
|
|
+ { input: [0, 0], output: [0] },
|
|
|
+ { input: [0, 1], output: [1] },
|
|
|
+ { input: [1, 0], output: [1] },
|
|
|
+ { input: [1, 1], output: [0] },
|
|
|
+]);
|
|
|
+
|
|
|
+const output = net.run([1, 0]); // [0.987]
|
|
|
+
|
|
|
+document.getElementById('output').innerHTML = "Input:" + [1, 0] + "<br>" + "output is " + output;
|
|
|
+</script>
|
|
|
+
|
|
|
+</html>
|